Seasonal changes in glycogen content and Na+-K+-ATPase activity in the brain of crucian carp.
نویسندگان
چکیده
Changes in the number of Na+-K+-ATPase alpha-subunits, Na+-K+-ATPase activity and glycogen content of the crucian carp (Carassius carassius) brain were examined to elucidate relative roles of energy demand and supply in adaptation to seasonal anoxia. Fish were collected monthly around the year from the wild for immediate laboratory assays. Equilibrium dissociation constant and Hill coefficient of [3H]ouabain binding to brain homogenates were 12.87+/-2.86 nM and -1.18+/-0.07 in June and 11.93+/-2.81 nM and -1.17+/-0.06 in February (P>0.05), respectively, suggesting little changes in Na+-K+-ATPase alpha-subunit composition of the brain between summer and winter. The number of [3H]ouabain binding sites and Na-K-ATPase activity varied seasonally (P<0.001) but did not show clear connection to seasonal changes in oxygen content of the fish habitat. Six weeks' exposure of fish to anoxia in the laboratory did not affect Na+-K+-ATPase activity (P>0.05) confirming the anoxia resistance of the carp brain Na pump. Although anoxia did not suppress the Na pump, direct Q10 effect on Na+-K+-ATPase at low temperatures resulted in 10 times lower catalytic activity in winter than in summer. Brain glycogen content showed clear seasonal cycling with the peak value of 203.7+/-16.1 microM/g in February and a 15 times lower minimum (12.9+/-1.2) in July. In winter glycogen stores are 15 times larger and ATP requirements of Na+-K+-ATPase at least 10 times less than in summer. Accordingly, brain glycogen stores are sufficient to fuel brain function for about 8 min in summer and 16 h in winter, meaning about 150-fold extension of brain anoxia tolerance by seasonal changes in energy supply-demand ratio.
منابع مشابه
Histological and Biochemical Changes in the Liver of Albino Mice on Exposure to Insecticide, Carbosulfan
Carbosulfan (2,3-dihydro-2,2dimethyl-7-benzofuronyl [(dibutyl amino) thio] methyl] a carbamate insecticide and acaricide was administered orally at an effective dose of 48 mg/kg/day to albino mice for 5, 10, 20 and 30 days .Control mice received similar quantities of olive oil. Daily body weights were recorded and mice were sacrificed after 24 hours after the terminal exposure. The histologic e...
متن کاملEffect of different levels of salinity on immunolocalization of Na+-K+ ATPase and Aquaporin 3 in kidney of common carp Cyprinus carpio
Cyprinus carpio is a stenohaline species but can tolerate some ranges of changes in environmental salinities, so histomorphological methods and Na+-K+ ATPase and Aquaporin 3 immunohistochemistry were performed on common carp kidney as an osmoregulatory organ in experimental groups and control in order to investigate their possible roles during salinity challenge. Five groups of fish (n=25) with...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملRoles of energy status, KATP channels and channel arrest in fish brain K+ gradient dissipation during anoxia
The crucian carp (Carassius carassius L.) is one of the most anoxia-tolerant vertebrates known, being able to maintain ion homeostasis in its brain for many hours of anoxia. This study aims to clarify the importance of glycolysis during anoxia and also to investigate whether the extreme tolerance to anoxia could be due to down-regulation of K+ permeability ('channel arrest') and/or activation o...
متن کاملDoes anoxia induce cell swelling in carp brains? In vivo MRI measurements in crucian carp and common carp.
Although both common and crucian carp survived 2 h of anoxia at 18 degrees C, the response of their brains to anoxia was quite different and indicative of the fact that the crucian carp is anoxia tolerant while the common carp is not. Using in vivo T(2) and diffusion-weighted magnetic resonance imaging (MRI), we studied anoxia induced changes in brain volume, free water content (T(2)), and wate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 291 5 شماره
صفحات -
تاریخ انتشار 2006